Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Immunol ; 14: 1162211, 2023.
Article in English | MEDLINE | ID: covidwho-20231099

ABSTRACT

Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.


Subject(s)
Antiviral Agents , Cell Nucleus , Immunity
2.
Signal Transduct Target Ther ; 8(1): 170, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-2292813

ABSTRACT

Currently, the incidence and fatality rate of SARS-CoV-2 remain continually high worldwide. COVID-19 patients infected with SARS-CoV-2 exhibited decreased type I interferon (IFN-I) signal, along with limited activation of antiviral immune responses as well as enhanced viral infectivity. Dramatic progresses have been made in revealing the multiple strategies employed by SARS-CoV-2 in impairing canonical RNA sensing pathways. However, it remains to be determined about the SARS-CoV-2 antagonism of cGAS-mediated activation of IFN responses during infection. In the current study, we figure out that SARS-CoV-2 infection leads to the accumulation of released mitochondria DNA (mtDNA), which in turn triggers cGAS to activate IFN-I signaling. As countermeasures, SARS-CoV-2 nucleocapsid (N) protein restricts the DNA recognition capacity of cGAS to impair cGAS-induced IFN-I signaling. Mechanically, N protein disrupts the assembly of cGAS with its co-factor G3BP1 by undergoing DNA-induced liquid-liquid phase separation (LLPS), subsequently impairs the double-strand DNA (dsDNA) detection ability of cGAS. Taken together, our findings unravel a novel antagonistic strategy by which SARS-CoV-2 reduces DNA-triggered IFN-I pathway through interfering with cGAS-DNA phase separation.


Subject(s)
COVID-19 , Interferon Type I , Humans , Nucleocapsid Proteins/genetics , SARS-CoV-2/genetics , DNA Helicases/genetics , COVID-19/genetics , RNA Helicases/genetics , Poly-ADP-Ribose Binding Proteins/genetics , RNA Recognition Motif Proteins/genetics , DNA , Interferon Type I/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
3.
Nat Commun ; 13(1): 5204, 2022 09 03.
Article in English | MEDLINE | ID: covidwho-2008282

ABSTRACT

In addition to investigating the virology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), discovering the host-virus dependencies are essential to identify and design effective antiviral therapy strategy. Here, we report that the SARS-CoV-2 entry receptor, ACE2, conjugates with small ubiquitin-like modifier 3 (SUMO3) and provide evidence indicating that prevention of ACE2 SUMOylation can block SARS-CoV-2 infection. E3 SUMO ligase PIAS4 prompts the SUMOylation and stabilization of ACE2, whereas deSUMOylation enzyme SENP3 reverses this process. Conjugation of SUMO3 with ACE2 at lysine (K) 187 hampers the K48-linked ubiquitination of ACE2, thus suppressing its subsequent cargo receptor TOLLIP-dependent autophagic degradation. TOLLIP deficiency results in the stabilization of ACE2 and elevated SARS-CoV-2 infection. In conclusion, our findings suggest selective autophagic degradation of ACE2 orchestrated by SUMOylation and ubiquitination as a potential way to combat SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Autophagy , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Sumoylation , Ubiquitin-Protein Ligases/metabolism
4.
Signal Transduct Target Ther ; 6(1): 167, 2021 04 24.
Article in English | MEDLINE | ID: covidwho-1585891

ABSTRACT

The ongoing 2019 novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has posed a worldwide pandemic and a major global public health threat. The severity and mortality of COVID-19 are associated with virus-induced dysfunctional inflammatory responses and cytokine storms. However, the interplay between host inflammatory responses and SARS-CoV-2 infection remains largely unknown. Here, we demonstrate that SARS-CoV-2 nucleocapsid (N) protein, the major structural protein of the virion, promotes the virus-triggered activation of NF-κB signaling. After binding to viral RNA, N protein robustly undergoes liquid-liquid phase separation (LLPS), which recruits TAK1 and IKK complex, the key kinases of NF-κB signaling, to enhance NF-κB activation. Moreover, 1,6-hexanediol, the inhibitor of LLPS, can attenuate the phase separation of N protein and restrict its regulatory functions in NF-κB activation. These results suggest that LLPS of N protein provides a platform to induce NF-κB hyper-activation, which could be a potential therapeutic target against COVID-19 severe pneumonia.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , NF-kappa B/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Signal Transduction , A549 Cells , Acrylates/pharmacology , Animals , COVID-19/pathology , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Phosphoproteins/metabolism , Vero Cells , COVID-19 Drug Treatment
5.
Signal Transduct Target Ther ; 5(1): 221, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-1387195
6.
World J Radiol ; 13(5): 102-121, 2021 May 28.
Article in English | MEDLINE | ID: covidwho-1278641

ABSTRACT

In coronavirus disease 2019 (COVID-19), medical imaging plays an essential role in the diagnosis, management and disease progression surveillance. Chest radiography and computed tomography are commonly used imaging techniques globally during this pandemic. As the pandemic continues to unfold, many healthcare systems worldwide struggle to balance the heavy strain due to overwhelming demand for healthcare resources. Changes are required across the entire healthcare system and medical imaging departments are no exception. The COVID-19 pandemic had a devastating impact on medical imaging practices. It is now time to pay further attention to the profound challenges of COVID-19 on medical imaging services and develop effective strategies to get ahead of the crisis. Additionally, preparation for operations and survival in the post-pandemic future are necessary considerations. This review aims to comprehensively examine the challenges and optimization of delivering medical imaging services in relation to the current COVID-19 global pandemic, including the role of medical imaging during these challenging times and potential future directions post-COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL